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Abstract—Due to their intrinsic electro-mechanical coupling effect, piezoelectric materials have
been widely used in industry. In the present paper, stress and electrical field distributions in a
piezoelectric half-plane under contact load at the surface are considered. Since a piezoelectric
material is intrinsically anisotropic, stress analysis has been impeded by the complexity raised by
too many material constants. Hereby, Stroh’s formalism is applied in the present study to overcome
this difficulty. The solution for a concentrated force and charge acting on the boundary of the half-
space, the Green function, is obtained in a neat form. The non-slip and slip indentor contacts on
the piezoelectric half-space are also formulated.

I. INTRODUCTION

A piezoelectric half-space under contact loading is considered in the present paper. In the
following sections, we will focus on a linear piezoelectric material whose constitutive
equation is given by :

oc=Cy—ceE, D=ey+eE, (1)

where C is the elasticity tensor of rank four, ¢ the permittivity tensor of rank two and e
the piezoelectricity tensor of rank three. When the piezoelectricity vanishes, the problem
decouples into an anisotropic elastic and a dielectric problem.

Due to their anisotropic behavior, piezoelectric materials are described by many
material constants. The stress and electric field analyses of piezoelectric solids have been
impeded by the difficulties raised by these material constants. For instance, results for
piezoelectric plate vibration (Tiersten, 1969) showed great complexity because of the aniso-
tropic behavior of the material. Nevertheless, a satisfactory formulation for two-dimen-
sional anisotropic elasticity has been developed via the Stroh (1958) formalism. This
formulation has been proved to be elegant and powerful for studies of dislocation (Stroh,
1958), wave propagation (Barnett and Lothe, 1985) and interfacial cracks (Ting, 1986).
Barnett and Lothe (1975) applied this formalism to a piezoelectric material when a dis-
location in an infinite piezoelectric medium was studied. More recent works by Suo et al.
(1992) for an interfacial crack in a piezoelectric composite and by Fan (1995) for the Saint-
Venant end effect in a piezoelectric strip have both benefitted from the Stroh formalism.
This formalism is applied again here for piezoelectric contact problems.
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2. STROH’S FORMULATION FOR PIEZOELECTRIC MATERIALS

In rectangular coordinates the linear piezoelectric solid is described by :
Constitutive laws ;

g = C,j/kl}"k/_emijA»

D; = ey +enEx 2)
where g, y,;, D; and E; are stress, strain, electric displacement (or electric induction) and

electric field, respectively.
Deformation relations :

1
Vo = 5 (st s,

E, = —o,, (3)

where u, and ¢ are mechanical displacement and electric potential, respectively.
Equilibrium equations

D, =0, 4

provided body force and electric source are absent. Substituting eqns (2) and (3) into eqn
(4) yields:

(Ciwuty +ep0) ;=0
(ewstty —€40) i = 0. (5)

If all the fields are independent of the third coordinate, say x;, special solutions can be
sought in the form:

U= {u, 0} = Alix +{x))a, (6)
where, without loss of generality,

L=1 G=p o

T

and a =(a,, a,, a,,a,)" is independent of the spatial coordinates.
A direct substitution of eqn (6) into eqn (7) gives

(Ccu'k/fak + ewﬁa-’t)CuCﬁ =0

(Carpi —E5pa2) o5 = 0. (8)

For non-zero values of a, we must have:

Coslolp  €lalp
det|: RS ) ©)
CurpSabp T Exptalp

This is a nonlinear eigenvalue problem. However, it can be converted to a standard linear
eigenvalue problem via the so-called eight-dimensional representation, as summarized in
Appendix A.

As in the anisotropic elasticity formulation, it can be proved that the eigenvalue p
cannot be purely real due to the positive definiteness of the tensors C;, and ¢;. Four pairs
of p can be arranged as:
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Prea=p, (I=1,2,3and4)
pr=a,+if, B;>0. (10)

Corresponding to the eigenvalues p, = o, +if,, there are four independent eigenvectors
which form a 4 x 4 matrix:

A= {a;,a,,a;,a,}. (1)

The complex conjugates

A= {ﬁlaﬁ2’53a§4} (12)

are the eigenvectors corresponding to p,, 4, = p.
Using the eigenvalues and corresponding eigenvectors, the general solution can be
written as a linear combination of the eight eigenvectors :

Hiz)

Sfa(z3)
U=2R 1542, 43, A4 N E] 13
e | (a;,a,,a;5,a,) 11z (13)

Jalz4)

where

For the sake of convenience, we write this in a compact form,
U = 2 Re [Af(2)]. (13)

Conversion from this compact form to a four-complex-variable form is demonstrated in
Appendix B.
Furthermore, from the constitutive equations, we have

t= {0'2,-,D2} = 2 Re [Bf'(2)] (14)
s = {a“,Dl} = —2Re[BPf'(2)], (15)

where
B= {blab23b35b4}, P=diag{p1,1)z,p3,p4} (16)

b, = (Coupar +eppas)lp,

by = (—&pas +eapa,)p. 17

It has been noted that the matrices A and B are non-singular when the eigenvalues are
distinct. However, they may be singular in some special cases in which eigenvalues coincide.
Ting and co-workers have undertaken extensive studies on these degenerate cases in aniso-
tropic elasticity. A similar theorem and discussions are expected for piezoelectricity. In the
following sections, we will take A and B as non-singular matrices. The degenerate cases
where A and B are singular will be discussed elsewhere.
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3. MIXED BOUNDARY VALUE PROBLEM FOR A PIEZOELECTRIC HALF SPACE
Piezoelectric material is taken to occupy the region x, > 0, whose boundary, the x,-

axis, is divided into two parts, namely the contact region (Vx, €(—a, a)) and its complement.
In the contact region, the traction, electric potential and induction can be written as

a5 = 0}
p=09"
D, = DS. (18)

The right hand side terms in the equation are the values in the indentor, which may or may
not be known before we solve the problem. The boundary condition on the latter part is
assumed to be

0'2,-(.’(“0) = 0
D,(x,,0) =0 x,¢(—a,a). 19

Boundary conditions other than eqns (19), for instance a prescribed ¢, can also be con-
sidered by a formulation provided by Suo (1993). In the present section, we focus on eqns
(19) to demonstrate the approach.

With eqns (18) and (19) and the notation of eqn (14), we may write

Bf'(x,)+Bf'(x|) = t(x,) Vx,e(— o0, ). (20)
For later convenience, we introduce a function

h(z) = Bf (z) Vx, >0
h(z) = —Bf () Vx, <0, (21a,b)

which is analytic throughout the whole plane except on the contact segment. Using limits
of the function h(z) on x, = 0 (England, 1971), eqn (20) leads to a Hilbert problem

h™(x))—h (x)) =t(x,), Vx e(—a,a)
h*(x))—h (x,) =0, Vx, ¢(—a,a). (22)

The solution of eqn (22) can be obtained as:

h(z) = 1 f ﬂdx, (23)

2ni |, x—z

if the distributions of the traction and electric induction are known over the region
Vx,e(—a,a). As a particular example, let us take the traction and electric induction to be
uniform over this region. Then

z+a

h(z) = 2im.1n (Z_“>. (24)

If we take:
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ll_l:I(} 2at =T, (25)

we have the two-dimensional Green function for the piezoelectric half space as:

T

W@ =~

(26)

This one-complex-variable solution, eqn (26), will be converted to a four-complex-variable
solution in Appendix B.

A similar problem has been considered by Sosa and Castro (1994) for a simplified
constitutive equation.

3.1. Non-slip contact

When the traction—induction is unknown in the contact region, while all the dis-
placement components and electric potential are prescribed in the contact region, the
solution is obtained by considering a Hilbert problem. Using the notation of eqns (12) and
(13), the displacement-potential continuity across the interface reads as

Af'(x))+Af(x,) =d'(x,) VYx,&(—a,a) (27
and the traction-induction free condition outside the contact zone leads to:
Bf (x))+Bf (x,) =0 Vx,¢(—a,a), (28)

where

d: {ul’ul’u:’»’q’}T (29)

is assumed to be known inside the contact region. By using the function defined in eqn (21),
eqn (27) is rewritten as:

h*(x)+Y 'Yh™(x)) =Y 'd'(x)), Vx, e(—a,a), (30)
where

Y = iAB~". 31)

The matrix Y has been discussed by Suo ef al. (1992). The properties of this matrix will be
mentioned when it is used later on. If the matrix is real, the solution of eqn (30) is given by
(England, 1971):

h(z) =

2n ot () (x—2)
where

12) =(z—a)(z+a) ™2

and Q is a polynomial to be determined by considering the resultant force acting on the
contact zone (Fan and Keer, 1994).

In general, Y is a complex matrix. The Hilbert problem, eqn (30), is solved only if we
can transform the matrix Y™'Y in eqn (30) into a diagonal form. Following the approach
proposed by Ting (1986) for anisotropic elasticity, Suo ez al. (1992) modified the trans-
formation procedure for piezoelectricity. By considering an eigenvalue problem as
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Yw = > Yw, (33)
we have four eigenpairs (eigenvalue, eigenvector) as:
(e, W), (—&, W), (—ik,w3), (ik,W,). (34)
Any field can be decomposed via this eigensystem, say,

h = h|w+hzw+h3W3 +h4W4
d=dw+d,WHd;w;, +d,w,. (35)

With the eigen-expansion eqn (35), we can decouple eqn (30) as:

A+ e ™ h = id)

hi+ e ™ hy = id,

hi+ e hy = id,

hi +e ™ hy = id,, (36)
where

d=Y 'd

The solutions are obtained in a form like eqn (32).

It is worthwhile mentioning that there are two kinds of indentor, namely, a sharp
edged and a round edged indentor. For the sharp edged one, the contact zone is known.
At the two corners, the stress is singular by analogy with isotropic elastic contact [see
Johnson (1985)]. However, the singularities for this piezoelectric contact problem are more
complicated than those in elasticity. Fortunately, the detailed structure of the singularities
has been discussed by Suo er al. (1992) when they studied the interfacial crack in piezoelectric
bimaterials. In the case of a round edged indentor, there is no singularity in the solution.
The contact zone size is determined by considering the resultant force acting on the half-
plane.

3.2. Slip contact
If the interfacial static friction of the contact is not high enough to sustain the slip
between the two bodies, some displacement components in the x-direction may be dis-
continuous. Thus, the boundary condition eqn (27) must be modified as, for instance,
u, =, and o0,; = poy,, (37)
together with proper electrical conditions. In eqn (37), u is the sliding friction coefficient.

Let us summarize the displacement—potential and traction-induction conditions inside
the contact region:

Yh* (x)+¥h~(x)) = id'(x,), Vx,&(—a,a) (38)
h*(x,)—h~(x,) = t(x,), Vx, e(—a,a). (39)

Eliminating h~(x) from eqn (38), it follows that:
(Y + Db (x,) - Vt(x,) = i (x)). (40)

On the other hand, the Plemelj formula gives:
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h+(x1)=%t(x1)+ : J 1) 4¢ (41)

Qi _E—x
Substituting eqn (41) into eqn (40), one has

Y —

Y .
Tt(kﬁ)-{-w ——d¢& = id'(x,). 42)

—a E—x,

Y+Y J‘“ t(¢)

There are four equations for four unknowns in eqn (42). Thus, eqn (42) provides the
distribution of traction inside the contact region, which in turn allows us to have the whole
field solution via eqn (23).

4. SPECIAL CASES

4.1. Decoupled elastic and dielectric contact problems

When the piezoelectric tensor vanishes, the problem is decoupled into anisotropic
elastic and dielectric ones. The anisotropic elastic contact problem has been considered by
Fan and Keer (1994) via Stroh’s notation. The latter, a mixed boundary value problem for
a general anisotropic dielectric half-space, is presented here.

In the case e = 0, the eigenvalue problem eqn (8) is simplified as

Cupllpar = 0 (43a)
and

xplalpas = 0. (43b)

The corresponding eigenvectors are in the form of':

A, O B. 0
0 1 0 b,

where A, and B, are 3 x 3 matrices corresponding to anisotropic elasticity. The dielectric
problem is formed by eqn (43b) and scalars in eqn (44). The eigenvalues for the anisotropic
dielectricity are obtained from eqn (43b):

g1 +2¢,p 485,07 =0, 45)
They are:
pa=—24i i~<g—> ps = P (46)
€2 €32 \&22

The last equation of (27), corresponding to dielectricity, is decoupled from the first three
equations which are associated with anisotropic elasticity. Thus,

4 +f4(x) = ¢5(x). (47)

The solution of eqn (47) is easily obtained by applying eqn (32).

It is noted that the degree of electromechanical coupling in a piezoelectric material can
be described by a dimensionless parameter formed by the three types of moduli, which is
roughly in the range:
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e

JeC

A weakly coupled material such as quartz, which is widely used in frequency filters
and resonators, has moduli of the order of (Salt, 1987):

=0.1~1. (48)

C~10"Nm? &e~10"Fm™?, e~10"'Cm 2. 49)

It is seen that :

~0.1. (50)
JeC

The mechanical and electric fields of this weakly coupled piezoelectric material can be
approximated by the decoupled elastic and dielectric solutions.

On the other hand, a strongly electromechanical coupled material, such as lead—
zirconate—titanate (say PZT-5H), has moduli of the order of:

C~10"Nm™?, ¢~10*Fm™2, e~10Cm 2 (51

The non-dimensional parameter is of the order of:

~ 0.3, (52)
N

For this kind of material, the mechanical and electric fields have to be calculated based
upon the fully coupled formulation.

4.2. Piezoelectric half-space with transverse symmetry around poling axis
The above mentioned PZT-5H belongs to this material category. Assuming the x,—x,
plane is the isotropic plane, the material constants of this material are:

o1 C1y €2 €45 0 0 INETE F0 0 e
03, Cla €11 €13 0 0 Y22 0 0 ey g,
033 _ Ciz Cy3 (33 0 0 JEEN 0 0 e E,
033 caa O 0 2735 0 e5s 0 E.
013 0 0 0 0 c44 0 2715 es 0 ’
| 0137 | L0 0 0 0 0 (cii—ci2)2] | 2712 L0 0 0|
and
v ]
DT [0 0 0 0 e 0] 7] [e 0 07[E
Drl=]0 0 0 es 0 0 2’;:2 Ho & 0|lE]L 3
D, e;, ey e 0 0 O 0 0 &:]LEs
2y.5
L2712

Let us consider a two-dimensional contact problem in the (x, y) plane; the in-plane
deformation (u,, u,) is decoupled from the anti-plane field (i, ¢). The former is identical
to an elastic problem. We focus on the latter.

The eigenvalues corresponding to this problem are obtained from eqn (8) as
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Ps=ps =1 P;=pg=—i (54)
and the related matrices are

AZ(' O Bze 0 YZ(’ O
A= . B= . Y= . (55)
0 A, 0 B, 0 v,

where the right upper 2 x 2 matrices correspond to in-plane deformation, while the left
lower corner matrices correspond to the coupled anti-plane deformation and electric field.
It is straightforward to derive:

1 0 ¢ e
A,,:[ ] B, =i + " ] (56)
0 1 €15 —é&p

v oo el kerd &7
Ttk keis  —ep i

and

where

k= 9%5/(044810-

Since Y, is a real matrix, then the solution, eqn (32), can be applied.
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APPENDIX A: EIGHT-DIMENSIONAL REPRESENTATION OF PIEZOELECTRICITY

In general, the eigenvalue problem eqn (8) requires a numerical procedure. A standard linear eigenvalue
problem will allow us to use existing numerical subroutines. To convert eqn (8) into a standard linear eigenvalue
problem, Barnett and Lothe (1975) introduced an eight-dimensional representation.

In the following formulation, lower case subscripts take on the range 1, 2 and 3, while the upper case
subscripts take on the range 1, 2, 3 and 4. The eight-dimensional formulation introduces the following auxiliary
symbols for matrix formulations.

o M=1,2.3

Zo = { (A1)
—E, M=4

. {a M=123 ")
D, M=4
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{u/n M=1,23 s
Uy =
M o M=4
Ci S M=1,2,3
£ €, J=1,23:M=4 "
o Cinm J=4,M=1,23
—&, JM=4

It should be pointed out that they are not tensors. One has to be careful when the coordinate system is changed.
In terms of the notation of eqns (A1)-(A4), the constitutive equations [eqns (2) and (3)] are written as;

2= EpmZyn = EippaUsin. (A5)
The equilibrium equation (4) is written as:
X, =0 (A6)
Equation (A6) admits the following representation by potentials ® = {®,, ®,, ®,, ®,}":
Z,=—-0, Z,=0,,. (AT)
Substituting eqn (A7) into eqn (A5), one obtains:

QUAI +RUA2 = *d)c
R'U,+TU, =@, (A8)
where

O = Evsuts Roye = Evjizs Toy = Espanae (A9)

It is noted that Q and T are symmetric matrices. Thus, eqn (A8) can be written in an eight-dimensional form as

v v
=N— Al0
X, éx,’ (A10)
where
U N, N,
v=( , N=< ) (A1)
® N, NI
N, =T 'R", N,=T"'=NI,
N; = RT'RT—-Q = N1, (A12)

The inverse of the matrix T is obtained based on the following argument. From eqns (A4) and (A9), it follows

that
T, e
T= < ) (A13)
el —¢n,

where the 3 x 3 upper left corner of the matrix, T,, is formed from the part of the elastic tensor which is positive
definite (Ting, 1986} ; the lower right corner is contributed from the dielectric tensor, a negative scalar; and e is
formed by proper components of the piezoelectric tensor. It is found that

T, '(I+qee"T;') —qT,'e

T__,=< (I+gq ) —q > (Al4)

—qe' T, ! q

where, by using the positive definiteness of T,,
! <0 (AL5)
g=—"—"""—"<0.
—eyp—e'T, e
In order to diagonalize eqn (A10), the following linear eigenvalue problem is considered :

NE = pe. (Al6)

The eigenvalue is obtained by solving :
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det(N—pl) = 0.

(A17)

The explicit form of eqn (A17) is the same as eqn (9). The eigenvectors lead to the matrices A and B in Section 2.

APPENDIX B: THE GREEN'S FUNCTION

The Green’s function solution, eqn (26), is in a one-complex-variable form which is adopted in the text to
bypass the complexity caused by four complex variables (Suo ef «/., 1992). The final solution has to be converted
from this one-complex-variable form into the four-complex-variable representation. The conversion is done by

the following procedure.

Without losing generality, let us consider a concentrated force acting on the free surface. The column T in

eqn (26) is written explicitly as:

T=(0.P.0,00". (BI)
Noting eqn (21a), we have
0
— P/2niz
f(z)=B"' R (B2)
0
0
where
by by b Na
B by by bhy bYy
b b b B
bi b by bl
is the inverse matrix of B. In terms of the four complex variables, we have
(b'lz/:,
P | brafzs
f(z).25.23,24) = — — - B3
= (B3)
blisizy
where z,(I = 1,2, 3.4) are given by eqn (13).
Furthermore, the traction—-induction will be calculated from
(4 ~
Z biibiaiz
k=1
4
Z bablaiz,
, P K=
h(z).25,23.24) = BI'(2, 22,23, 24) = — 5= (B4)
i

.

SAS 33:9-G

4
Z babisizi
k=1t

4

‘gl
Z baAhu/-'A
k=1

J



